4Th玻璃窑组合式余热锅炉的设计毕业论文
2022-04-03 22:40:34
论文总字数:20859字
摘 要
我国大概有4000~5500座各种形式的玻璃熔窑,据统计,08年我国玻璃产量大约为两千到三千万吨,要消耗标准煤1700~2100万吨/年。在玻璃厂中玻璃窑炉是耗能最多的热力设备,它一般会消耗全厂80~85%的能源。但是玻璃窑炉的热能只有三分之一用于熔化玻璃,炉体散热占三分之一,又有三分之一的热量被烟气带走。因此,我国的玻璃行业有着巨大的节能潜力,在玻璃窑炉中,只有少量的热量有效地用在熔化玻璃上,有大部分可以加以利用。本文旨在从玻璃窑的烟气着手,设计一台组合式余热锅炉回收烟气的余热,生产出0.8MPa(相对压力)的饱和蒸汽供生产工艺用,从而达到节能的目的。
本文以燃用重油为例,重油烟气的露点温度一般在180℃左右,这就使得省煤器烟气侧的大多数管壁的温度会低于露点温度,产生露点腐蚀。另外,烟气若在余热锅炉中的流动阻力过大,又会影响烟气向大气中的排放。烟气中的灰分会在管壁上积灰,增大传热过程的热阻。因此要合理选择管束的布置方式,和管束的结构形式,从而减少烟气的压力降,降低管束积灰的可能性。
综合考虑诸多因素,最终选择以热管作为传热元件。在设计计算过程中,首先根据热平衡方程、烟气和水的进、出口温度、压力、流量等原始参数,计算出传热量;然后通过选择的热管的规格及其结构参数,计算出总传热系数,最后确定热管的数量及其排布方式。在烟气温度低于或接近露点腐蚀温度的省煤器,对其热管进行钝化处理。这样设计能够在提高换热系数的同时解决金属结构的低温腐蚀问题。合理选择烟气工况流速,对热管进行合理排布,使烟气侧的阻力降达到要求。
本课题的设计的步骤主要参照《热管技术及其工程应用》,烟气各成分在不同温度压力下的密度,动力粘度,导热系数,定压比热等热物性参数依据《实用热物理性质手册》。在烟气的流动压力降以及水动力循环等各项指标满足设计的前提下,综合考虑各种因素,结构设计需要选择适用合理、经济的结构形式,同时满足制造、检修、装配、运输和维修等要求,设计出了本余热锅炉的施工总图、汽包和换热器主体图以及主要的零部件图。同时对汽包、传热管等材料进行强度
校核,验证其是否满足工作环境强度要求。本次设计结果满足任务书的设计要求,在安全性和经济性及环保要求方面均合格。
关键词: 余热锅炉 热管 玻璃窑炉
The design of 4T/h glass kiln combined waste heat boiler
Abstract
In China, there are probably 4000~5500 various forms of glass furnace. According to statistics, China's glass production is about two thousand to thirty million tons in 2008, consuming standard coal 1700 ~ 21 million tons a year. Glass furnace in the glass furnace is the most energy consuming equipment, it will consume the whole plant 80 ~ 85% of the energy. But only 1/3 of the glass furnace heat is used for melting glass, furnace body heat 1/3, and 1/3 of the heat is taken away by the flue gas. Therefore, China's glass industry has a huge potential for energy saving, in glass furnace, only a small amount of heat effectively used in the melting of glass, there is a large part of it can be used to make use of. The purpose of this paper is to design a combined type waste heat boiler to recover the waste heat of the flue gas from the glass kiln, to produce the 0.8MPa (relative pressure) saturated steam for the production process, so as to achieve the purpose of energy saving.
In this paper, the use of heavy oil as an example, the dew point temperature of the flue gas is generally about 180 degrees, which makes the temperature of the gas side of the flue gas side of most of the tube wall temperature will be lower than the dew point temperature, dew point corrosion. In addition, if the flow resistance of flue gas in the waste heat boiler is too large, it will affect the emission of flue gas to the atmosphere. Ash in the flue gas can be accumulated in the pipe wall to increase the thermal resistance of the heat transfer process. Therefore, it is reasonable to choose the arrangement of tube bundle, and the structure of tube bundle, so as to reduce the pressure drop of smoke and reduce the possibility of ash deposition.
Considering many factors, the heat pipe is chosen as the heat transfer element. In the design and calculation process, first of all according to the heat balance equation, gas and water, outlet temperature, pressure, flow, and other original parameters calculated heat transfer; then calculate the total heat transfer coefficient by
the choice of heat pipe to the specifications and structure parameters, and finally determine the heat pipe of the number and arrangement of. The flue gas temperature is lower than or close to the dew point corrosion temperature of the coal saving device, the heat pipe of the passivation treatment. The design can solve the problem of low temperature corrosion of metal structure at the same time to improve the coefficient of heat transfer. Reasonable selection of gas working velocity, reasonable arrangement of the heat pipe, the flue gas side pressure drop to meet the requirements.
This topic design steps mainly refer to the heat pipe technology and its application in engineering ", the components of flue gas under different temperature and pressure density, dynamic viscosity, thermal conductivity, constant pressure specific heat and thermal parameters according to the practical thermal physical properties Handbook." Under the premise of the flue gas flow pressure drop and hydrodynamic circulation indicators meet the design, comprehensive consideration of various factors, the structural design need to choose reasonable and suitable economic structure, while it satisfies the requirements of the manufacture, repair, assembly, transportation and maintenance etc., design of the waste heat boiler general plan of construction, drum and heat exchanger main body figure and the main parts of the map. At the same time, the drum, heat transfer tube and other materials for strength check to verify whether it meets the requirements of the working environment. The design results meet the design requirements of the task book, in terms of safety and economic and environmental requirements are qualified.
Key words: Waste Heat Boiler, Heat Pipe, Glass Kiln
目录
摘要 I
Abstract I
第一章 绪论 1
1.1我国玻璃工业窑炉能耗现况 2
1.2我国玻璃窑炉余热回收现状简介 3
1.3余热锅炉 4
1.3.1烟气 4
1.3.2三种类型的余热锅炉 4
1.3.3热管余热锅炉的优越性 5
1.3.4余热回收系统简介 5
1.4热管技术及其原理 7
1.4.1热管简介 7
1.4.2热管的传热原理 7
1.4.3热管的基本特性 7
1.5课题的必要性及意义 8
第二章 4T/h玻璃窑组合式余热锅炉的设计 9
2.1 设计要求 9
2.2 余热锅炉设计中要考虑的问题 9
第三章 热力计算和结构设计 10
3.1 原始参数 10
3.2蒸发器的设计 10
3.2.1烟气的热物性的计算 10
3.2.2烟气的体积流量和质量流量 12
3.2.3计算平均温差 13
3.2.4确定迎风面积和迎风面管排数 13
3.2.6求加热侧总传热面积 16
3.2.7求蒸发器烟气侧的压力降 16
3.2.8计算蒸发器烟气侧首末排管壁的平均温度 17
3.2.9计算蒸发器首排热管内工质的蒸发温度及对应的饱和压力 17
3.3省煤器的设计(烟气从230℃到210℃) 18
3.3.1烟气的焓 18
3.3.2烟气的定性温度 18
3.3.3烟气在定性温度下的热物性参数 18
3.3.4平均温差 19
3.3.5确定迎风面积Aex和迎风面管排数 19
3.3.6水侧的沸腾换热系数 20
请支付后下载全文,论文总字数:20859字