登录

  • 登录
  • 忘记密码?点击找回

注册

  • 获取手机验证码 60
  • 注册

找回密码

  • 获取手机验证码60
  • 找回
毕业论文网 > 毕业论文 > 理工学类 > 热能与动力工程 > 正文

用于干衣的顺排倾斜H型翅片热管换热器的传热分析毕业论文

 2022-06-11 21:32:38  

论文总字数:28605字

摘 要

普通干衣机在使用过程中会有部分热能的损失。热管换热器能够回收这部分热量来预热进入干衣机的冷空气,这样就能起到节能的作用。

本文利用ICEPAK软件进行仿真模拟。在热侧进口温度53℃、冷侧进口温度20℃、风速2.5m/s的情况下,研究热管倾斜角、热管间距、翅片间距、翅片厚度、翅片高度等参数对H型翅片热管换热器传热性能的影响。然后分析模拟结果,得出最佳传热效果下的特征参数的值。最后,根据这些参数进行换热器的设计,并且绘制出相应的零件图以及装配图。

分析结果如下:

(1)通过软件的仿真模拟能够得出,在最佳传热性能下,热管换热器的热侧进出口温差最大大约有20℃,冷侧进出口温差最大大约有10℃;

(2)三个不同方案单独进行分析,得出了一致的结论:在保持热管间距、翅片高度、翅片厚度不变的情况下,热管倾斜角越大、翅片间距越小,换热系数越大;

(3)三个不同方案间对比分析:保持热管倾斜角不变,一定范围内,翅片高度越大,换热系数越大,当翅片高度继续增大时,换热系数减小;翅片厚度越大,换热系数越大;

(4)综合各特性参数的影响以及经济性的考虑,最终选定热管倾斜角30°、管间距34mm、翅片间距1.0mm、翅片厚度1.0mm、翅片高度10mm作为换热器设计参数;

(5)通过设计计算,换热器热侧空气放出热量1.407KW,冷侧空气实际获得热量1.324KW;热管以顺排方式排列,迎风横向管排数14排,纵向管排数4排。

关键词:干衣机 仿真模拟 H型翅片 传热系数 热管换热器

Analysis on heat transfer on H-type finned tube heat exchanger used for dry clothes

ABSTRACT

The dryer will lose some heat energy during using. Heat pipe heat exchanger could recover it to preheat the cold air entering the dryer, thus there are have an important role in saving energy .

In this paper, ANSYS ICEPAK as a tool is used to calculate for simulation. Studying some variable parameters, which are the inclination Angle of heat pipe, the spacing of tube and fin, the thickness and height of fin have impact on heat transfer performance of H-type finned heat pipe heat exchanger under this circumstance that the temperature of inlet in hot side is 53℃ and the temperature of inlet in cold side is 20℃, wind speed 2.5 m/s. Then, it is concluded that under the optimal heat transfer effect of the value of characteristic parameters by analyzing the results of simulation.

Finally, according to these parameters to design a heat exchanger and draw the corresponding parts drawing and assembly drawing.

The results are as follows:

(1) The simulation software can be concluded that, under the optimal heat transfer performance, the largest temperature difference of the heat exchanger between the hot side of the import and export is about 20 ℃, the maximum temperature difference between the cold side of the import and export is about 10 ℃;

(2) There are a same conclusion that while maintaining the same heat pipe spacing, fin height and fin thickness, heat pipe inclination angle is larger or the fin spacing is smaller, and the coefficient is greater by analyzing three different scenarios separately.

(3) Comparison between three different options: to maintain the same inclination angle of the heat pipe, the height of the fin is larger, and the heat transfer coefficient is greater; when the height of the fin continues to increase, the heat transfer coefficient will be decreasing; within a certain range; the thickness of the fins is larger , and the heat transfer coefficient is greater.

(4) Final, selecting those parameters that the heat pipe inclination angle 30°, tube spacing 34mm, fin spacing 1.0mm, fin thickness 1.0mm and 10mm fin height as the heat exchanger design parameters consider to the economic and the impact about the characteristic parameters comprehensive.

(5) The air of the hot side form the heat exchanger emit heat energy about 1.407KW, and the air of the cold side get heat energy about 1.324KW actually; the horizontal wind tube row number 14 row and the vertical tube row number 4 row by designing and calculating.

Key words: dryer; simulation; H-type finned; heat transfer coefficient; heat pipe heat exchanger

目录

摘要……………………………………………………………...........……………..

ABSTRACT……………………………………….............……………………….

符号表……………………………………………..........…………………………..

第一章 绪论……………………………………............…………………………..1

1.1研究背景………………………………………............………………………..1

1.2热管换热器的简介………………………………............…………………… 1

1.2.1 热管换热器及其分类……………………............………………………..1

1.2.2 热管换热器的发展………………………............………………………..2

1.2.3 热管换热器的应用………………………………............………………..2

1.2.4 翅片热管换热器…………………………………………............………..3

1.3 前景与展望…………………………………………………………….............5

第二章 热管换热器模型建立………………..............…………………………6

2.1 ANSYS Icepak简介…………….............………………………………………6

2.2 物理模型……………………............………………………………………….7

2.3 几何模型……………………............………………………………………….8

2.4 边界条件……………………………............………………………………….9

2.4.1 壁面边界条件…………………………............…………………………9

2.4.2 流场边界条件…………………………………............…………………9

2.4.3 进出口边界条件………………………………………............…………9

2.5 网格划分…………………………………………………………….............…9

2.5.1 ANSYS Icepak网格类型………………………………………............…9

2.5.2网格粗划分…………………………………………………...........……..9

2.5.3网格细划分……………………………………………………..........….10

2.5.4网格划分结果展示…………………………………………..........…….10

第三章 数据处理及分析……………………………………………..........….12

3.1 对流传热问题的数学描述………………………………………...........……12

3.1.1微分控制方程………………………………………...........……………12

3.2 理论计算…………………………………………………...........……………12

3.2.1传热系数的计算……………………………...........……………………12

3.2.2雷诺数Re计算………………………............…………………………..13

3.2.3努赛尔数Nu的计算…………………............………………………….14

3.2.4压降∆P的计算……………………............……………………………..14

3.2.5传热热阻的计算 ……………………............………………………….14

3.3 模拟结果云图分析……………………...........………………………………14

3.3.1 温度云图分析………………………...........…………………………...14

3.3.2 速度矢量图分析……………............…………………………………..16

3.4 模拟结果后处理………………………………...........………………………17

请支付后下载全文,论文总字数:28605字

您需要先支付 80元 才能查看全部内容!立即支付

企业微信

Copyright © 2010-2022 毕业论文网 站点地图