登录

  • 登录
  • 忘记密码?点击找回

注册

  • 获取手机验证码 60
  • 注册

找回密码

  • 获取手机验证码60
  • 找回
毕业论文网 > 毕业论文 > 理工学类 > 热能与动力工程 > 正文

单根圆翅片圆管的传热与流动分析毕业论文

 2022-07-13 22:02:33  

论文总字数:32821字

摘 要

翅片管热交换器是一种带翅片的管式热交换器并且在动力、化工、制冷等工业中有广泛的应用。随着工业的不断发展,工业缺水以及工业用水的环境污染问题越来越严重,空气冷却器的应用更引起人们的重视,与此同时,传热强化方面研究的进展,使得翅片管换热器在蒸发、冷凝方面的相变换热器得到广泛的应用。

在数值模拟中,本文先建立一个基本模型,通过尝试不同的算法参数、精确度参数、 网格参数等设置,对具有相同边界条件的同一模型进行数值模拟,并将模拟结果处理后与手工计算结果进行对比,选取结果最接近的一组作为后续模拟计算的参照组。其次,为冷却保证模拟结果的精确性,本文还对模型进行网格无关性检查,发现当网格数量达到100万时,同一基本模型对流换热系数基本保持不变,即网格数量对模拟结果的影响不大。然后分别就不同翅片间距、翅片厚度、翅片高度等三个因素对翅片管换热器的传热系数、范宁摩擦系数、传热热阻这三个流动及传热特性参数的影响进行数值模拟分析。计算结束后,本文先以基本模型为例对其温度场、速度矢量场、速度标量场以及压力场进行定性分析以了解整个翅片管式换热器的传热状况,从图中可以直观看出换热强烈和换热薄弱以及流动剧烈和流动平稳的区域。然后文中将后处理的Re数、Nu数、传热系数h、范宁摩擦系数f、传热热阻R等数据与变量参数(翅片间距S、翅片厚度δ 、翅片高度a)整理成折线图的形式,以定性分析各因素的具体影响趋势。

通过模拟计算并比较数据得出结果:随着迎面风速增大,Re数增大,Nu数增大,摩擦系数 f 减小,传热热阻R也减小;随着翅片间距增大,Nu数减小,摩擦系数 f 减小,对传热热阻R的影响较小;随着翅片厚度增大,Nu数增大,摩擦系数 f 明显减小,传热热阻R也显著减小;随着翅片高度增加,Nu数增加,摩擦系数 f 也增加,传热热阻R减小。由此可以看出,翅片间距、翅片厚度、翅片高度对于翅片管式换热器的流动与传热性能的影响较为显着,即在翅片管设计时应当优先考虑的因素为:翅片间距、翅片厚度及翅片高度。

关键词:圆型翅片管 数值模拟 传热特性 流动特性

Heat transfer and flow analysis of a single

Round finned tubes

Abstract

Finned tube heat exchanger is a finned tube heat exchanger and is widely used in the power, chemical, refrigeration and other industries. With the continuous development of industry, environmental pollution problems of industrial water and industrial water and more serious, air cooler applications more attention has been paid, at the same time, progress in terms of heat transfer enhancement research, making finned tubes change heat evaporation, condensation aspects phase change heat has been widely used.

In the numerical simulation, this paper first create a basic model, by trying different algorithm parameters, the accuracy of the parameters, the grid parameters set for the same model with the same boundary conditions are simulated, and the simulation results with manual post-processing computing The results were compared to select a group as a result of the closest simulation of subsequent reference group. Secondly, in order to simulate the cooling ensure the accuracy of the results, this paper the model grid-independent inspection, found that when the number of grid reaches one million, the same basic model of convective heat transfer coefficient remained unchanged, ie the number of simulation grid not affect the results. Then the three factors were different fin spacing, fin thickness, fin height of the finned tube heat exchanger heat transfer coefficient, Fanning friction coefficient, thermal resistance and heat transfer characteristics of these three flow parameters Numerical simulation analysis impacts. After the calculation, the paper first with the basic model as an example of qualitative analysis of its temperature, velocity vector field, velocity and pressure fields scalar field in order to understand the situation of the finned-tube heat exchanger, and you can visually see from the chart the intense heat and intense heat flow and the flow is weak and unstable area. Then later in the number of Re deal, Nu number, heat transfer coefficient h, Fanning friction factor f, thermal resistance R and other data with variable parameters (fin spacing S, fin thickness δ, fin height a) finishing in the form of a line graph to qualitative analysis of the specific impact of each factor trends.

Calculate and compare data by simulating the outcome: With the head wind speed increases, Re number increases, Nu number increases, the friction coefficient f decreases, the thermal resistance R is also reduced; With the fin spacing increases, Nu number decreases, the friction coefficient f decreases, less impact on the thermal resistance of R; With the fin thickness increases, Nu number increases, the friction coefficient f significantly reduced thermal resistance R was also significantly reduced small; With the fin height increases, Nu number increases, the friction coefficient f increases, thermal resistance R decreases. It can be seen that the fin spacing, fin thickness, fin height to affect the finned tube heat exchanger flow and heat transfer performance of the more significant factors in the fin-tube design that should be given priority for : fin spacing, fin thickness and fin height.

Keywords: Round finned tubes; numerical simulation; heat transfer characteristic; flow characteristic

目 录

摘 要 I

Abstract II

符号说明 III

第一章 绪论 1

1.1 引言 1

1.2翅片管简介 1

1.2.1分类 1

1.2.2翅片管的主要性能要求 2

1.3翅片管国内外的研究现状 2

1.4翅片管的应用研究 4

第二章 翅片管模型及设计 5

2.1 翅片管物理模型介绍 7

2.2翅片管几何模型 8

2.3 典型翅片管换热器—空冷器设计 10

2.4 小结 13

第三章 数值模型建立 14

3.1 Icepak软件介绍 14

3.1.1软件简介 14

3.1.2软件功能 14

3.1.3 主要作用 16

3.1.4 应用领域 16

3.2边界条件 17

3.3 数值参数设定及模型建立 17

3.3.1 模型建立 17

3.3.2网格划分 18

3.3.3全局网格设置 18

3.3.4细化网格设置 18

3.3.5量检查 18

3.3.6网格划分展示 19

3.4网格无关性检查 21

第四章 数据处理及分析 22

4.1 传统理论计算方法 22

4.2 相关控制方程 24

4.3 模拟结果后处理计算 25

4.4 模拟结果云图分析 27

4.4.1温度场 27

4.4.2速度矢量场 29

请支付后下载全文,论文总字数:32821字

您需要先支付 80元 才能查看全部内容!立即支付

企业微信

Copyright © 2010-2022 毕业论文网 站点地图