大数据背景下金融统计方法研究毕业论文
2021-05-18 23:56:22
摘 要
本文主要在庞大的数据背景下对金融统计方法作了分析。采用了传统统计方法、回归分析、描述性统计分析以及var模型,选取近些年最新的数据,可以有效的反应社会问题,经过研究表明:我国的金融市场和国家出台的政策有相当大的联系,也会受到世界的影响,也评估出了银行同业拆借利率确实存在很大的风险。
首先,本文先分析大数据背景和金融统计方法,介绍论文所处的环境和选题意义,并对国内外著名学者的论文进行总结,给出综述,方便学习。
其次,在统计的四个领域:银行信贷统计、银行现金收支统计、货币供应与流通统计、金融市场统计中选取最被关注的两个统计方面,货币与银行,希望能够运用统计方法并与实际相联系能够得到更贴近社会的结论。以得出货币领域和银行领域的总体情况,并对统计方法做出合理的分析。
第三,在货币统计领域部分,从流通速度、货币化率、乘数、货币结构和总量、信贷债务测算、人民币汇率这五个方面来多方位的进行分析,其中运用了传统统计方法和回归分析,经过处理近些年的数据后对贷款和货币的不稳定性的原因进行整理,在这阶段我们能够得出国家近些年给出的财政政策所产生影响的结论,也对统计方法有个重新的认识。
最后,对于银行领域,本文选择银行间同业拆借利率风险评估这一方面来进行研究,选取这个课题的主要目的便是希望能够以金融统计的方法来对行业所潜在的风险进行预测。这一阶段分为描述性统计分析和模型分析两步骤来进行,首先对模型的选取做出评判,在对得出结果进行分析,以至于可以成功的得到对我国银行间同业拆借利率风险实际现象的偏数据化的结论。
关键字:大数据 金融统计 货币流通 同业拆借利率
Abstract
In this paper, the financial statistical methods are analyzed under the background of large data. Using the traditional statistical methods, regression analysis, descriptive statistical analysis and VAR model, select in recent years, the latest data, can be effective response to social problems, after research showed that introduction of China's financial market and the national policy has considerable contact, also will be the world and also the interbank interest rates does exist great risk.
First of all, this paper analyzes the background of large data and financial statistical methods, introduces the paper's environment and the significance of the topic, and summarizes the domestic and foreign famous scholars' papers, gives a summary, to facilitate learning.
Secondly, in four areas of Statistics: Statistics of bank credit, bank cash balance of payments statistics, money supply and circulation statistics, financial market statistics in selecting the most concern of the two statistics, monetary and banking, hope can use statistical methods and practice to get closer to the society of the conclusion. In order to obtain the general situation of the currency field and the banking field, and make a reasonable analysis of statistical methods.
Third, in the field of monetary statistics, from the velocity and the currency rate, multiplier, the structure and total amount of money and credit debt estimates, the RMB exchange rate these five aspects to multi-faceted analysis, including the use of a traditional statistical methods and regression analysis, through the causes of some of the recent data processing for loans and currency instability were collected, at this stage we can draw countries in recent years given fiscal policy influence the conclusions, but also have a new understanding of statistical methods.
Finally, for the banking sector, this paper chooses bank interbank interest rate risk assessment on the one hand, to carry out research, select the main purpose of this paper is the hope can to financial statistics method to the industry potential risk prediction. This stage is divided into for descriptive statistical analysis and model analysis of two steps to, first of all to model selected to judge on the results of analysis that can be managed to get on our bank interbank lending interest rate risk actual phenomenon partial data of the conclusion.
Key words: big data financial statistics currency interbank lending rate
目 录
摘要 I
Abstract II
第一章:引言 1
1.1.选题背景与研究意义 1
1.1.1.选题背景 1
1.1.2研究意义 1
1.2研究综述 2
1.2.1关于大数据的研究 2
1.2.2关于金融统计的研究 3
1.2.3研究评述 4
1.3研究思路与研究方法 5
1.3.1研究思路 5
1.3.2研究方法 6
1.4可能存在的创新点与不足 6
1.4.1.可能存在的创新点 6
1.4.2存在的不足 6
第二章:理论综述 7
2.1货币的供应与流通 7
2.1.1货币的供应 7
2.1.2货币的流通 7
2.2银行间同业拆借市场利率风险度量 8
2.2.1VAR模型 8
2.2.2银行同业拆借利率 9
第三章:货币的供应与流通 11
3.1货币流通速度测算 11
3.1.1中国货币流通速度测算 11
3.1.2货币流通速度分析 12
3.2货币化率(R),货币乘数(m,m)测算 12
3.2.1货币化率,货币乘数测算的结果 12
3.2.2货币乘数,货币化率的分析 13
3.3货币结构和总量测算 15
3.3.1测算基础货币构成 15
3.3.2货币总量变化比率以及基础货币构成比率 16
3.4信贷、债务数据的测算 17
3.4.1人民币信贷 17
3.4.2本外币信贷 18
3.4.3外汇信贷 19
3.5人民币实际汇率和名义汇率与对外贸易差额的关系分析 21
3.5.1 2005年6月-2012年8月的数据 21
3.5.2实验结果分析 24
第四章:我国银行间同业拆借市场利率风险度量——基于VaR模型的实证研究 26
4.1银行间同业拆借市场利率的现状分析与模型建立 26
4.1.1数据及其来源 26
4.1.2描述性统计分析 26
4.1.3模型建立 32
4.2实证分析及模型检验 32
4.3结论 34
第五章:总结与展望 37
5.1总结 37
5.2展望 37
参考文献 39
致 谢 41
第一章:引言
1.1.选题背景与研究意义
1.1.1.选题背景
中国开始加入WTO后,不断向金融的深层次迈进,历经了长久的时间,金融统计所起到的作用更是使金融发展得到了迅猛的进步。
阿里巴巴的创办人——马云赴台演说就曾提到,未来的科技,会是数据技术的时代,他们对大数据是十分看重的。如今的时代是在迅猛变化的,科技,信息,甚至是人们之间的沟通都越发的紧密相连,使繁琐的生活变成了历史,大数据就是这个高科技时代的产物。
煤炭依据性质能够划分成无烟煤、焦煤、贫煤、肥煤这几个类型,而依据挖掘又可分为露天、深山,它们在挖掘方面的成本是不一样的。因此很多人用蕴藏能量的煤矿来比喻为数据。相似的是,大数据的核心不是“多”,而是“有效”。相比数量,价值和难易度就会显得更为重要。获得竞争的关键,对于众多领域而言,是如何有效地利用大数据。