登录

  • 登录
  • 忘记密码?点击找回

注册

  • 获取手机验证码 60
  • 注册

找回密码

  • 获取手机验证码60
  • 找回
毕业论文网 > 开题报告 > 理工学类 > 信息与计算科学 > 正文

Klein-Gordon-Schr#246;dinger方程的一个两层紧致差分格式开题报告

 2021-12-24 15:27:00  

全文总字数:5628字

1. 研究目的与意义及国内外研究现状

有限差分方法是求解微分方程重要而有效的数值手段。

近年来,随着人们对微分方程数值方法研究的深入,高精度的有限差分方法日益受到人们的重视,紧致差分格式就是一类高精度的有限差分方法。

它具有精度高,分辨率高,对网格节点数要求不高等优点,因而受到很多学者的关注。

剩余内容已隐藏,您需要先支付后才能查看该篇文章全部内容!

2. 研究的基本内容

  1. 给出KGS方程的一个紧致差分格式,并证明其满足两个守恒率;
  2. 进行误差分析;
  3. 进行一些数值实验,验证格式的准确性和应用性。

3. 实施方案、进度安排及预期效果

2017年2月之前:学习毕业论文有关文件,认真填写任务书,确定好题目。

2017年3月:完成任务书、开题报告、外文翻译。

2017年4月:撰写论文初稿,并交导师审核。

剩余内容已隐藏,您需要先支付后才能查看该篇文章全部内容!

4. 参考文献

[1] fukuda i. and tsutsumi m., on coupled klein-gordon-schrodinger equations ii, j. math.anal. appl., 66 (1978) 358-378.[2] makhankov v., dynamics of classical solitons (in non-integrable systems), phys. lett. c.,35 (1978) 1-12.[3] guo b., global solution for some problem of a class of equations in interaction of complex

schrodinger eld and real klein-gordon eld, sci. china. series. a., 2 (1982) 97-107.

[4] hayashi n. and wahl w., on the global strong solutions of coupled klein-gordon-schrodinger equations, j. math. soc. jpn., 39 (1987) 489-497.[5] ozawa t. and tsutsumi y., asymptotic behaviour of solutions for the coupled klein-gordon-schrodinger equations, adv. stud. pure. math., 23 (1994) 295-305.[6] ohta m., stability of stationary states for the coupled klein-gordon-schrodinger equations,non. anal., 27 (1996) 455-461.[7] xia j., han s. and wang m., the exact solitary wave solution for the klein-gordon-schrodinger, appl. math. mech., 23 (2002) 52-58.[8] wang m. and zhou y., the periodic wave solutions for the klein-gordon-schrodingerequations, phys. lett. a., 318 (2003) 84-92.[9] hioe f., periodic solitary waves for two coupled nonlinear klein-gordon and schrodingerequations, j. phys. a: math. gen., 36 (2003) 7307-7330.[10] darwish a. and fan e., a series of new explicit exact solutions for the coupled klein-gordon-schrodinger equations, chaos. soliton. fract., 20 (2004) 609-617.[11] xiang x., spectral method for solving the system of equations of schrodinger-klein-gordoneld, j. comput. appl. math., 21 (1988) 161-171.[12] bao w. and yang l., effcient and accurate numerical methods for the klein-gordon-schrodinger equations, j. comput. phys., 225 (2007) 1863-1893.[13] kong l., liu r. and xu z., numerical simulation of interaction between schrodinger eldand klein-gordon eld by multisymplectic method, appl. math. comput., 181 (2006) 342-350.[14] hong j., jiang s. and li c., explicit multi-symplectic methods for klein-gordon-schrodinger equations, j. comput. phys., 228 (2009) 3517-3532.[15] kong l., wang l., jiang s. and duan y., multisymplectic fourier pseudo-spectral integratorsfor klein-gordon-schrodinger equations, sci. chi. math., 56(2013)915-932.[16] wang s. and zhang l., a class of conservative orthogonal spline collocation schemes forsolving coupled klein-gordon-schrodinger equations, appl. math. comput., 203 (2008)799-812.[17] dehghan m. and taleei a., numerical solution of the yukawa-coupled klein-gordon-schrodinger equations via a chebyshev pseudospectral multidomain method, appl. math.model., 36 (2012) 2340-2349.[18] zhang j. and kong l., new energy-preserving schemes for klein-gordon-schrodinger equations,appl. math. model., 40 (2016) 6969-6982.[19] zhang l., convergence and stability of a conservative nite difference scheme for a classof equation system in interaction of complex schrodinger eld and real klein-gordon eld,numer. math. a. j. chinese. univ., 22 (2000) 362-370.[20] zhang l., convergence of a conservative difference schemes for a class of klein-gordon-schrodinger equations in one space dimension, appl. math. comput., 163 (2005) 343-355.[21] wang t. and jiang y., point-wise errors of two conservative difference schemes for theklein-gordon-schrodinger equation, commun. nonlinear sci. numer. simul., 17 (2012)4565-4575.[22] wang t. and guo b., unconditional convergence of two conservative compact di erenceschemes for non-linear schrodinger equation in one dimension (in chinese), sci. sin. math.,41 (2011) 207-233.[23] wang t., guo b. and xu q., fourth-order compact and energy conservative differenceschemes for the nonlinear schrodinger equation in two dimensions, j. comput. phys., 243(2013) 382-399.[24] pan x. and zhang l., high-order linear compact conservative method for the nonlinearschrodinger equation coupled with the nonlinear klein-gordon equation, nonlinear anal.,92 (2013) 108-118.[25] sun q., zhang l., wang s. and hu x., a conservative compact difference scheme for thecoupled klein-gordon-schrodinger equation. numerical methods for partial differentialequations, 29 (2013) 1657-1674.[26] wang t., optimal point-wise error estimate of a compact difference scheme for the klein-gordon-schrodinger equation, j. math. anal. appl., 412 (2014) 155-167.[27] sun z. and zhu q., on tsertsvadzes difference scheme for the kuramoto-tsuzuki equation,j. comput. appl. math., 98 (1998) 289-304.[28] zhou y., application of discrete functional analysis to the finite difference method, inter.acad. publishers, beijing, 1990.[29] xia j. and wang m., exact solitary solution of coupled klein-gordon-schrodinger equations,appl. math. mech., 23 (2002) 52-57.

剩余内容已隐藏,您需要先支付 10元 才能查看该篇文章全部内容!立即支付

企业微信

Copyright © 2010-2022 毕业论文网 站点地图