登录

  • 登录
  • 忘记密码?点击找回

注册

  • 获取手机验证码 60
  • 注册

找回密码

  • 获取手机验证码60
  • 找回
毕业论文网 > 毕业论文 > 理工学类 > 数学与应用数学 > 正文

斐波那契数列的概念和妙用毕业论文

 2021-12-22 22:00:24  

论文总字数:15922字

摘 要

黄金分割的发现和发展可追溯到公元前6世纪,最初由古希腊数学家毕达哥拉斯及其学派提出,随后,欧几里得在《几何原本》中,完整地给出了黄金分割的几何解与证明。13世纪,《算盘书》中所记录的“兔子繁殖问题”引出斐波那契数列的概念,当n趋于无穷时,斐波那契数列的相邻两项之比的极限恰巧等于黄金分割率。从此,斐波那契数列与黄金分割的研究紧密相连,渗透进我们生活的方方面面。它们的应用涉及绘画、音乐、雕塑、建筑、自然、生产等领域,不仅成为世界公认的美学定律,也在应用数学中提供了有趣的思路。在本论文中,我将围绕以下几个部分对斐波那契数列展开研究:

1.整理前人挖掘斐波那契数列的思路,了解数列的基本性质与黄金比例的关联,初步探究其运用的方向。

2.活用验证斐波那契数列问题的方法,对照与之类似的“佩尔数列”,验证其通项公式与递增比值,为搭建纸牌塔做齐铺垫工作。简单讨论符合“黄金比例”审美的纸牌塔的受力结构,再从塔的基础框架入手,分别探究其“块状部分”和“线状部分”中符合斐波那契数列的现象,引出杨辉三角的应用。

3.寻找斐波那契数列在纸牌游戏中的运用,重点讨论特定的抽牌问题。

关键词 斐波那契数列 黄金比例 佩尔数列 杨辉三角

Abstract

The discovery and development of the golden section can be traced back to the 6th century BC.Itwas originally proposed by the ancient Greek mathematician Pythagoras and his school. Later, Euclidean completes the geometric solutions and proofs of the golden ratio in "The Elements". In the 13th century, the "Rabbit Reproduction Problem" recorded in the "Liber Abaci" led to the concept of Fibonacci sequence. When n tends to infinity, the ratio of two consecutive Fibonacci number happens to approach golden ratio rate. Since then, the study of Fibonacci sequence has been closely related to the golden ratio, and its application has penetrated into every aspect of our lives. They have been applied in a range of fields involving painting, music, sculpture, architecture, nature, production, not only they become a universally recognized aesthetic law, they also providing interesting ideas in applied mathematics. In this paper, I am aiming to study Fibonacci sequence in the following topics:
1. Review the preceding investigation on Fibonacci sequence, understand the relationship between the fundamental nature of the sequence and the golden ratio, and explore the basic direction of its application.
2. Make use of the proof of Fibonacci sequence problem, compare it with the similar "Pell sequence", verify its general term formula and increasing ratio, and do the paving work for the construction of the card tower. Briefly discuss the loadbearing structure of a card tower which matches with the "golden ratio" aesthetics, explore any Fibonacci phenomena that could be observed in the "block part" and "line part" of the card tower structure, and finally lead to discussion of Pascal’s triangle.
3. Look for the use of Fibonacci numbers in card games and focus on discussing specific card game probability problem.

Key words:

Fibonacci sequence golden ratio Pell sequence Pascal’s triangle

目 录

摘 要 ……………………………………………………………………… 2

Abstract …………………………………………………………………… 3

第一章 绪 论

1.1 前人研究成果回顾 ………………………………………………… 5

1.1.1斐波那契数列 ……………………………………………………………… 5

1.1.2黄金数 ………………………………………………………………………… 5

1.1.3黄金矩形与对数螺线 ………………………………………………………… 6

1.1.4斐波那契数列与黄金分割的运用 …………………………………………… 7

1.2本论文的研究目标 ………………………………………………… 7

第二章 斐波那契数列在纸牌塔中的运用

2.1准备工作 ………………………………………………………………………… 8

2.2纸牌塔搭建 ……………………………………………………………………… 11

2.3塔状结构与斐波那契数列 ……………………………………………………… 13

2.4纸牌游戏与斐波那契数列 ……………………………………………………… 15

第三章 总 结 …………………………………………………………… 20

参考文献 ………………………………………………………………… 21

绪 论

请支付后下载全文,论文总字数:15922字

您需要先支付 80元 才能查看全部内容!立即支付

企业微信

Copyright © 2010-2022 毕业论文网 站点地图