登录

  • 登录
  • 忘记密码?点击找回

注册

  • 获取手机验证码 60
  • 注册

找回密码

  • 获取手机验证码60
  • 找回
毕业论文网 > 外文翻译 > 理工学类 > 数学与应用数学 > 正文

测量单位和函数形式外文翻译资料

 2023-01-12 11:28:03  

测量单位和函数形式

原文作者:Jeffrey M.Wooldridge

摘要:在投票结果方程(2.28)中,Rsup2;= 0.505.因此,竞选支出的份额解释只是在这样的选举结果的变化百分之50.这是一个相当大的部分.在应用经济学的两个重要的问题是:(1)了解如何改变单位的依赖性和/或独立变量的OLS估计和测量的影响(2)知道如何将经济学中流行的功能形式为回归分析.一个完整的理解的功能形式问题所需要的数学在附录A了.

关键词:全局优化; 测量单位; OLS变化; 影响统计

在例2.3中,我们选择了测量数千美元的年薪,和净资产收益率是衡量百分之一(而不是一个小数点).关键是要知道薪水和净资产收益率是衡量在这个例子中,为了使方程估计的意义(2.39).我们还必须知道,OLS估计预期的方式改变时,完全的依赖和独立变量的测量单位的变化.在example2.3,假设,而不是千美元衡量的工资,我们衡量的美元.让salardol工资以美元(salardol = 845761会被解释为845761美元.).当然,salardol有数千美元的测量一个简单的关系:salardol工资?1000?工资.我们不需要实际运行的salardol对罗伊的回归知道估计方程为:萨拉circ;RDOL = 963191 18501净资产收益率.

我们得到的截距和斜率在(2.40)简单地乘以拦截和边坡(2.39)1000.这给出了方程(2.39)和(2.40)相同的解释.看(2.40),如果净资产收益率= 0,然后萨拉circ;RDOL = 963191,所以预测的工资963191美元[我们得到的方程相同的值(2.39)].此外,如果净资产收益率增加了一个,然后预测的工资增加18501美元;再次,这是我们从我们前面的分析方程(2.39).

一般来说,很容易找出发生了什么的截距和斜率的估计当因变量变化的测量单位.如果因变量乘以常数c-which意味着每个样品中的值乘以c-then OLS截距和斜率的估计也乘以C(这是假设没有关于独立变量的变化.)在首席执行官工资的例子,C1000从工资salardol.

我们还可以使用首席执行官工资的例子来看看会发生什么,当我们改变的独立变量的测量单位.定义roedec =净资产收益率/ 100是净资产收益率的十进制数;因此,roedec = 0.23意味着股本回报率23%.专注于改变的独立变量的计量单位,我们回到我们原来的因变量,工资,这是在数千美元计算.当我们回归的工资roedec,我们获得萨尔circ;进制= 963.191 1850.1 roedec.

在roedec系数是100倍的系数对罗伊案(2.39).这是应该的.一个百分点的变化的净资产收益率相当于Delta;roedec = 0.01.从(2.41),如果Delta;roedec = 0.01,然后Delta;萨尔circ;进制= 1850.1(0.01)= 18.501,这是通过使用(2.39).请注意,从(2.39)至(2.41),独立变量除以100,并因此OLS斜率估计乘以100,保留方程的解释.一般来说,如果自变量除以或乘以某个非零常数,C,那么OLS斜率也乘以或除以c分别.

拦截并没有改变(2.41)因为roedec = 0对应于一零的股本回报率.一般来说,唯一的独立变量的变化不影响截距测量单位.

在上一节中,我们定义了R2为善良的OLS回归拟合测量.我们也可以问发生什么,R2当单位是独立或依赖变量的变化测量.不做任何代数,我们应该知道结果:善良的模型拟合不应该依赖于我们的变量的测量单位.例如,变化的工资数额,由股本回报的解释,不应取决于工资是以美元或数千美元或是股本回报率是百分之一或一个十进制的测量.这种直觉可以验证数学:使用R2的定义,它可以表明,R2,事实上,在Y或X的单位不变将简单回归的非线性.

到目前为止我们侧重于依赖和独立的变量之间的线性关系.我们在1章中提到的,线性关系不几乎适合所有经济上的应用.幸运的是,它是将许多非线性的简单回归分析,通过适当定义的依赖和独立变量而容易.在这里,我们将两种可能性,应用工作中经常出现.

估计一个模型如(2.42)是直接使用简单回归的时候.只是定义因变量,y,y =日志是(工资).独立的变量是由X =教育代表.OLS的力学和以前一样:的截距和斜率的估计是由公式(2.17)和(2.19).换句话说,我们获得了0和1beta;circ;beta;circ;从日志OLS回归(工资)对教育.

使用相同的数据,如例2.4,但使用日志(工资)作为因变量,我们得到如下关系:日志(circ;工资)= 0.584 0.083教育(2.44)N = 526,R = 0.186sup2;.

对教育的系数有一个解释当它乘以100:工资增加百分之8.3每增加一年的教育.这就是经济学家们所说的“回到一年的教育.“这是要记住,用工资的日志中的主要原因是重要的(2.42)工资实施教育的恒定比例的影响.一次方程(2.42)得到的工资,自然对数是很少提及.特别是,它是不正确的说,一年的教育可以增加日志(工资)8.3%.

拦截(2.42)是非常有意义的,因为它给出了预测的日志(工资),当教育= 0.R2表明教育解释变化在日志百分之18.6(工资)(而不是工资).最后,方程(2.44)不可能捕捉到所有的非—在工资和教育之间的关系的线性度.如果有“文凭的影响,然后从高中毕业第十二年可以比第十一年前更值钱.我们将学习如何让这种在7章非线性.的自然对数的另一个重要用途是在获得一个恒定的弹性模型.

我们可以不断的弹性模型有关的首席执行官薪酬公司销售估计.该数据集是相同的一个用于在例2.3中,除了我们现在涉及工资销售.让销售年度公司销售,在百万美元来计算的.恒定的弹性模型,日志(0 工资=beta;beta;日志(销售) U,(2.45)在1beta;是工资与销售的弹性.这个模型属于简单回归模型下的定义因变量为Y =日志(工资)和独立变量为x =日志(销售).这个方程的OLS估计横截面数据的回归分析.日志(SALcirc;元)= 4.822? 0.257日志(销售)2.46.n = 209,R = 0.211sup2;.

系数的日志(销售)是估计的弹性工资相对于销售.这意味着,公司销售额的增加首席执行官工资通过对弹性通常的解释百分之0.257增加百分之1.

两种功能形式覆盖这部分通常会在剩下的这段文字出现.我们已覆盖模型包含自然对数在这里因为他们过于频繁的应用工作.这些模式的解释将不在多元回归的情况有很大的不同.

它也注意到截距和斜率的估计发生什么有用的如果我们改变的因变量的测量单位,当它出现在对数形式.

因为变化的对数形式近似比例变化,这没有发生在边坡是有意义的.我们可以看到这写正变为每个观察岛原始方程c1yi是日志(一)= 0 beta;beta;1xi UI.如果我们增加日志(C1)两边,我们得到的日志(C1) 日志(一) [日志(C1)beta;0 ] beta;1xi 界面

日志(c1yi) [日志(C1) beta;0 ] beta;1xi 界面.(记住,日志的总和等于他们产品的日志作为附录A所示)因此,边坡仍然是1,但拦截现在日志(C1)=0.同样,如果独立变量的日志(X),我们改变测量X的单位在以对数斜率是相同的,但拦截不改变.你将被要求验证问题2.9中的这些说法.

我们结束本小节总结四的功能形式可以从使用原始变量或其自然对数的组合.在表2.3中,X和Y代表在其原来的形式的变量.该模型与Y作为因变量,X作为独立变量被称为等级模型,因为每个变量出现在其平面形式.日志模型(Y)作为因变量,X作为独立的变量被称为日志级别模型.我们不会明确地讨论了对数模型,因为它是在实践中较少.在任何情况下,我们将在稍后的章节,该模型的例子.

表2.3中的最后一列给出了解释beta;1.在记录层次模型,100times;1beta;有时也被称为Y半弹性X.我们在例2.11中所提到的,在双对数模型,beta;1 Y与X.表2.3值得认真研究的弹性,我们会把它经常在文本剩余的线性回归的意思

我们在本章研究了简单的回归模型,也被称为简单的线性回归模型.然而,正如我们所见,一般的模型也允许一定的非线性关系.那么什么是“线性”的意思呢?你可以看到在方程(2.1),Y=0+beta;beta;1X 美国最关键的是,这个方程中的参数是线性的,beta;beta;0和1.有关于X和Y与原来的解释和利益的解释变量没有限制.当我们看见在例2.7和2.8,X和Y可以是变量的天然原木,这是很常见的应用.但我们不需要停在那里.例如,没有什么能阻止我们使用简单的回归模型,如缺点= 0 1beta;beta;radic;公司 U的估计,其中的利弊是每年的消费和公司是年收而简单的回归力学不取决于Y和X的定义,系数的解释取决于他们的定义.工作经验的成功,它是在解释系数比计算公式如成为高效成为精通更重要(2.19).我们将解释在回归线的估计,当我们研究多元回归得到更多的实践.

有许多模型不能被转换为一个线性回归模型,因为他们在参数不是线性的;一个例子是缺点= 1 /(0 beta;beta;1inc) 这样的模型估计带我们进入非线性回归模型的境界,这超出了本文的范围.对于大多数应用程序,选择一个可以放在线性回归模型是足够的.

在2.1节中,我们定义了人口模型Y = 0 beta;beta;1X U,我们认为是有用的简单回归分析的关键假设是预期的U值给出任何X的值是零.在部分2.2,2.3,和2.4,我们讨论了最小二乘估计的代数性质.现在我们回到人口模型和OLS的统计性质的研究.换句话说,我们现在看到的beta;circ;0和beta;circ;1作为参数估计?0?1,出现在人口模型.这意味着我们将研究的分布特性?circ;0和?circ;1在不同的随机样本的人口.(附录C中定义的估计和评价他们的一些重要性质.)

剩余内容已隐藏,支付完成后下载完整资料


UNITS OF MEASUREMENT AND FUNCTIONAL FORM

Abstract

In the voting outcome equation in (2.28), Rsup2;= 0.505. Thus, the share of campaign expenditures explains just over 50 percent of the variation in the election outcomes for this sample. This is a fairly sizable portion. Two important issues in applied economics are (1) understanding how changing theunits of measurement of the dependent and/or independent variables affects OLS estimates and (2) knowing how to incorporate popular functional forms used in economics into regression analysis. The mathematics needed for a full understanding of functional form issues is reviewed in Appendix A.

Keywords: Global optimization; The Effects of Changing; Measurement on OLS

Text

In Example 2.3, we chose to measure annual salary in thousands of dollars, and the return on equity was measured as a percent (rather than as a decimal). It is crucial to know how salary and roe are measured in this example in order to make sense of the estimates in equation (2.39). We must also know that OLS estimates change in entirely expected ways when the units of measurement of the dependent and independent variables change. In Example2.3, suppose that, rather than measuring salary in thousands of dollars, we measure it in dollars. Let salardol be salary in dollars (salardol =845,761 would be interpreted as $845,761.). Of course, salardol has a simple relationship to the salary measured in thousands of dollars: salardol ? 1,000?salary. We do not need to actually run the regression of salardol on roe to know that the estimated equation is: salacirc;rdol = 963,191 18,501 roe.

We obtain the intercept and slope in (2.40) simply by multiplying the intercept and the

slope in (2.39) by 1,000. This gives equations (2.39) and (2.40) the same interpretation.

Looking at (2.40), if roe = 0, then salacirc;rdol = 963,191, so the predicted salary is

$963,191 [the same value we obtained from equation (2.39)]. Furthermore, if roe

increases by one, then the predicted salary increases by $18,501; again, this is what we

concluded from our earlier analysis of equation (2.39).

Generally, it is easy to figure out what happens to the intercept and slope estimates when the dependent variable changes units of measurement. If the dependent variable is multiplied by the constant c—which means each value in the sample is multiplied byc—then the OLS intercept and slope estimates are also multiplied by c. (This assumes nothing has changed about the independent variable.) In the CEO salary example, c ?1,000 in moving from salary to salardol.

We can also use the CEO salary example to see what happens when we change the units of measurement of the independent variable. Define roedec =roe/100 to be the decimal equivalent of roe; thus, roedec =0.23 means a return on equity of23 percent. To focus on changing the unitsof measurement of the independent variable, we return to our original dependent variable, salary, which is measured in thousands of dollars. When we regress salary on

roedec, we obtain salcirc;ary =963.191 1850.1 roedec.

The coefficient on roedec is 100 times the coefficient on roe in (2.39). This is as it should be. Changing roe by one percentage point is equivalent to Delta;roedec = 0.01. From (2.41), if Delta;roedec = 0.01, then Delta;salcirc;ary = 1850.1(0.01) = 18.501, which is what is obtained by using (2.39). Note that, in moving from (2.39) to (2.41), the independent

variable was divided by 100, and so the OLS slope estimate was multiplied by 100, preserving the interpretation of the equation. Generally, if the independent variable is divided or multiplied by some nonzero constant, c, then the OLS slope coefficient is also multiplied or divided by c respectively.

The intercept has not changed in (2.41) because roedec =0 still corresponds to a zero return on equity. In general, changing the units of measurement of only the independent variable does not affect the intercept.

In the previous section, we defined R-squared as a goodness-of-fit measure for OLS regression. We can also ask what happens to R2 when the unit of measurement of either the independent or the dependent variable changes. Without doing any algebra, we should know the result: the goodness-of-fit of the model should not depend on

the units of measurement of our variables. For example, the amount of variation in salary, explained by the return on equity, should not depend on whether salary is measured in dollars or in thousands of dollars or on whether return on equity is a percent or a decimal. This intuition can be verified mathematically: using the definition of R2, it can be shown that R2 is, in fact, invariant to changes in the units of y or x.

Incorporating Nonlinearities in Simple Regression

So far we have focused on linear relationships between the dependent and independent variables. As we mentioned in Chapter 1, linear relationships are not nearly general enough for all economic applications. Fortunately, it is rather easy to incorporate many nonlinearities into simple regression analysis by appropriately defining the dependent and independent variables. Here we will cover two possibilities that often appear in applied work.

In reading applied work in the social sciences, you will often encounter regression equations where the dependent variable appears in logarithmic form. Why is this done? Recall the wage-education example, where we regressed hourly wage on years of education. We obtained a slope estimate of 0.54 [see equation (2.27)], which means that each additional year of education is predicted to increase hourly wage by 54 cents.

Because of the linear nature of (2.27), 54 cents is the increase for either the first year of education or the twentieth year; this may not be reasonable.

Suppose, instead, that the percentage increase in wage is the same given o

剩余内容已隐藏,支付完成后下载完整资料


资料编号:[287013],资料为PDF文档或Word文档,PDF文档可免费转换为Word

您需要先支付 30元 才能查看全部内容!立即支付

企业微信

Copyright © 2010-2022 毕业论文网 站点地图