登录

  • 登录
  • 忘记密码?点击找回

注册

  • 获取手机验证码 60
  • 注册

找回密码

  • 获取手机验证码60
  • 找回
毕业论文网 > 外文翻译 > 理工学类 > 应用物理 > 正文

使用右/左手复合材料的金刚石大面积微波等离子体CVD外文翻译资料

 2023-03-14 18:27:42  

本科毕业设计(论文)

外文翻译

使用右/左手复合材料的金刚石大面积微波等离子体CVD

作者:扎利卡斯·哈斯塔斯;波贝丁斯卡斯·保利乌斯;格雷夫·马丁·穆勒;艾克豪格·克里斯托弗;海宁·肯;霍尔斯特·博迪

国籍:挪威

出处:埃尔塞维尔杂志

摘要:钻石在低温(le;400°C)和大面积的生长对材料具有吸引力,这些材料对高温非常敏感,需要良好的电子、化学或表面三分法特性。谐振腔微波等离子增强(MWPE)化学蒸汽沉积(CVD)是生长钻石的标准方法,但沉积面积有限。在大面积和低温下对金刚石进行CVD的另一种方法是使用表面波等离子体(SWP)。在这项工作中,我们介绍了一种使用复合右手/左手(CRLH)材料激发SWP的新方法,并演示了纳米晶体金刚石(NCD)在4内的生长。西晶圆。该方法使用一组槽CLH波导耦合到共振发射器,该发射器连接到沉积室。每个CRLH波导支持无限波长的传播,并由周期级联单元链组成。SWP对放置一组插槽以中断共振发射器上的大面积地表电流感到兴奋。此配置可产生均匀的气体排放分布。我们使用H2/CH4/CO2气体混合物,在395°C和0.5mbar压力下实现低表面粗糙度(5 10nm)的NCD薄膜的80nm/h增长率。

  1. 简介

具有出色的物理,化学和表面摩擦学特性的纳米晶金刚石(NCD)是一种有吸引力的材料,适用于微机电系统,生物传感器,热管理以及要求高耐磨性的应用[1-4]。这些应用中的大多数都要求在大面积上形成均匀的金刚石薄膜,这对工业界和研究界是一个重大挑战。生长NCD的两种最广泛使用的方法是热丝(HF)和微波等离子体增强(MWPE)化学气相沉积(CVD)。

由于相对较低的成本和可扩展性,HFCVD是工业上用于大面积CVD的优选方法。可扩展性是通过扩展或添加更多的细丝来实现的,这些细丝可以产生高达几平方米的沉积区域。然而,HFCVD方法具有两个主要缺点:长期的灯丝不稳定性和由于金属从灯丝本身蒸发而对生长的金刚石膜的污染。长期的灯丝不稳定性是在温育期和CVD过程中灯丝腐蚀和在灯丝上形成碳化物的结果。这可能导致细丝变形,从而改变NCD的生长条件[5,6]。因此,为了生长高纯度金刚石薄膜,通常使用工作在2.45GHz频率的谐振腔MWPECVD系统。这些系统的沉积区域受到气体排放形状和大小的限制,气体排放的形状和大小大约是给定频率下波长的一半。可以通过将兆瓦级发生器的频率从2.45GHz降低到915MHz来实现气体排放尺寸的有限放大,从而分别产生大约30cm2和200cm2的沉积面积。值得注意的是,降低发电机频率会使兆瓦功率密度降低两倍,从而导致更高的运营成本[7]。

通常,在HFCVD和谐振腔MWPECVD系统中,金刚石膜通常在500℃至1000℃的基板温度下生长[8]。如此高的基板温度限制了可用于金刚石合成的基板材料的范围。但是,值得注意的是,多个研究小组已经成功地通过HFCVD[9,10],135MWMWPECVD[11-14]和200的低衬底温度(le;400ordm;C)达到135ordm;C的低基底温度(le;400ordm;C)生长钻石使用磁活性等离子体化学气相沉积法[15]。作为HFCVD和谐振腔MWPECVD的替代方法,可以使用分布式天线阵列(DAA)[16,17]或表面波等离子体(SWP)[18-21]MWPECVD系统来减轻上述缺点。SWP和DAA系统可以使用H2/CH4/CO2气体混合物在低温(le;400℃)下实现大面积且均匀地金刚石CVD,这对于在对高温敏感的基材(例如塑料)上进行金刚石合成是理想的。NCD薄膜已通过SWP方法在基底温度低于100℃的情况下成功地2]。此外,在低温下的生长减小了由基板和膜之间的热膨胀系数的不匹配引起的应力。DAA系统基于以正方形点阵矩阵配置排列的多个基本微波等离子体源[23]。通过基于波导的功率分配器分配到每个等离子体源的MW功率,然后通过一个包括调谐装置和铁氧体隔离器[24]的匹配电路进行分配。因此,DAA微波系统的可扩展性带来了额外的复杂性和成本。另一方面,SWP可以由线性[25]和开槽[19]天线或不同类型的微波发射器[26-28]激发。线性天线SWP由一组同轴线形天线激励,每个同轴线形天线均被石英管围绕[29-31]。线性天线的低方向性导致朝向沉积区域的低效MW辐射分布。另外,沿每个天线形成一个电磁驻波,从而影响电场和等离子体分布的均匀性。由缝隙天线激发的SWP会遇到诸如电弧放电,电介质窗口加热以及缝隙周围的局部等离子体等问题,从而产生不均匀的等离子体密度。提出了多种先进几何缝隙天线配置,以减轻这些影响[19,32]。但是,基于时隙的方法的基本限制是对两个相邻时隙(ds)之间最小距离的限制。ds由波导表面电流分布确定,并由波导波长的一半(ds=lambda;g/2)确定[33]。

在这项工作中,我们介绍了一种利用超材料的独特属性来激发SWP的新方法。具有无限波长传播特性的右/左手(CRLH)复合材料[34]用于实现dslt;lambda;g/2。我们基于3D数值电磁场模拟设计并构建了新的SWPMWPECVD系统,并通过实验实现了在4英寸Si晶片上生长平滑NCD膜。

二、数值模拟

SWPMWPECVD系统的工作频率为2.465GHz,它由三个相互连接的部分组成:CRLH波导阵列,谐振发射器和CVD室。图1示出了该系统的示意图。开缝的CRLH波导以无限的波长传播频率工作,并耦合到谐振发射器。谐振发射器上的表面电流被一组槽中断,以激发CVD室中的SWP。接下来,我们分别详细介绍每个部分的仿真和设计。

2.1CRLH波导CRLH波导由一系列周期性层叠的晶胞组成,这些晶胞支持左手(LH)和右手(RH)波传播。每个单位晶胞是一个人造结构,其x方向的尺寸(见图1)比导波的波长小得多,这可以用参考文献1中所述的等效电路模型来表示。[34]。仅当所有晶胞都处于平衡状态时,CRLH波导才支持无限波长传播,这意味着晶胞不具有阻带,并且在色散图中从LH到RH带存在无缝过渡。该标准可以通过参考文献中提出的单位电池的各种设计来满足。[35–38]。在这项工作中,我们使用与参考文献中介绍的单元格类似的单元格设计。[38]。图2显示了所选单元的色散图,该单元的无限波长传播频率为2.465GHz,与MW发生器的频率匹配。

在无限波长处,传播频率的相位不会随着波沿细胞的传播而改变。因此,沿着CRLH波导的表面电流不间断地流动,可以将激发槽放置在dslt;lambda;g/2的任意位置。我们使用了一组矩形槽,它们沿着每个CRLH波导等距放置(dsCRLH=5cm)。麦克斯韦方程组的有限积分方法用于模拟CRLH波导和谐振发射器上的表面电流。图3-(a)显示了耦合到谐振发射器的CRLH波导表面(xy平面)上的表面电流密度的仿真结果。CRLH波导上的所有缝隙均被同相或反相激励。总共使用四个CRLH波导将MW辐射耦合到谐振发射器。缝隙和CRLH波导的放置方式应使每个波导的磁流矢量投影指向同一方向[39,40]。

2.2谐振发射器

谐振发射器是一个放置在CRLH波导阵列下方的谐振腔。空腔的大小由激发槽占据的面积决定,其高度选择为大约2.465GHz的自由空间波长(lambda;0)的一半。CRLH波导上的缝隙将MW辐射以与磁电流矢量投影相同的方向耦合到谐振发射器中。结果,交变磁场产生的电场在大面积上产生均匀的表面电流分布[40]。图3-(b)显示了在面向CVD腔室石英窗口(见图1)的共振发射器表面(xy平面)上的表面电流密度的模拟结果。彼此等距放置的四个狭缝(dsRL=7cm)用于激发CVD室中的SWP。每个槽的长度选择为lambda;0/2,以使其共振[41]。直径23厘米的石英窗将共振发射器与CVD腔室隔开。石英窗和共振发射器通过强制气流主动冷却。重要的是要注意,在这项工作中,我们仅利用约30%的可用表面电流面积,利用一种特殊的槽配置来进行SWP激励。

2.3CVD室

CVD室是一个直径为21厘米的圆柱形水冷谐振腔,配有平移基板支架。通过求解频域nabla;times;(mu;minus;1rnabla;times;E)minus;omega;2ϵ0mu;0(ϵrminus;jsigma;omega;ϵ0)E=0来模拟CVD室和系统其余部分中的电场(1)其中E是电场矢量,ϵ0(mu;0)的自由空间的介电常数(磁导率),omega;为角频率,sigma;为电导率,andr为相对介电常数。对于除CVD室以外的模拟域,我们将ϵr=1和sigma;=0设置。假设SWP为冷碰撞氢等离子体[42],可以用有损耗的各向同性电介质表示,其介电常数和电导率由[43]给出ϵr=1-omega;2pomega;2 nu;2e和sigma;=nu;eϵ0omega;2pomega;2 nu;2e,(2)其中nu;e是电子中性碰撞频率,omega;p=me0radic;等离子体频率,ne电子密度,e电子电荷,meme电子质量。在氢放电中,碰撞频率可以近似为nu;easymp;1012(p/Tg)[44],其中p是单位为mbar的气压,Tg是单位为K的气体温度。在NCD的CVD过程中,将模拟中的压力设置为测量值(p=0.5mbar)。由于在电子和氢原子之间的弹性碰撞中动能转移较小,因此在这种压力下的气体温度接近室温,设定为Tg=300K[45]。SWP中的电子密度超过了截至密度(在2.45GHz时,nc=7.4times;1010cm-3)。在基于槽的系统中,接近石英窗口的氢SWP的测量ne值为2times;1011cm-3至1012cm-3,并且随着距离的增加而迅速下降[22,46]。因此,在模拟中,我们将电子密度设置为在p=0.5mbar(ne=5times;1011cm-3)时的实验测量值[46]。MW场振幅在SWP中呈指数衰减,因此需要相应模拟区域的精细网格。由于有限的计算资源,我们在仿真中排除了石英窗口与基板支架之间的距离超过2cm的区域。图4显示了使用有限元分析方法对纯氢气箱和存在SWP的CVD室在xz-和xy-平面上的电场分布。在模拟中,从石英窗口到基板支架的距离设置为51mm,从狭缝到基板支架的总距离约为lambda;0/2。该约束与谐振发射器类似,如参考文献1中所述,在大面积上产生均匀的电场分布。结果,在没有气体放电的情况下,谐振发射器上的缝隙的选定配置以及从石英窗口到基板支架的距离的限制,在沉积区域上产生了相似的电场强度,从而可以覆盖如图4(a)所示的4英寸Si晶片。但是,在存在SWP的情况下,电子密度为negt;nc,并且MW以表面波的形式沿着石英-等离子体界面传播。来自相邻缝隙的激发表面波彼此相互作用,产生立式表面波模式。由于缝隙的选定配置,波场在沉积区域上均匀分布,如图4(b)所示。这将产生均匀的血浆分布,下一部分中提供的实验结果进一步证实了这一点。电场强度随着距石英窗口的距离而迅速衰减,这表明接近石英-等离子体界面的等离子体吸收的MW功率最高。在实验中,等离子体以降低的密度从石英

剩余内容已隐藏,支付完成后下载完整资料


外文原文:

Large area microwave plasma CVD of diamond using composite right/ left-handed materials

ABSTRACT Diamond growth at low temperatures (le;400 ◦C) and over large areas is attractive for materials, which are sensitive to high temperatures and require good electronic, chemical or surface tribological properties. Resonantcavity microwave plasma enhanced (MWPE) chemical vapor deposition (CVD) is a standard method for growing diamonds, however, with limited deposition area. An alternative method for CVD of diamond over large area and at low temperature is to use a surface wave plasma (SWP). In this work we introduce a novel method to excite SWP using composite right/left-handed (CRLH) materials and demonstrate growth of nanocrystalline diamond (NCD) on 4-inch Si wafers. The method uses a set of slotted CRLH waveguides coupled to a resonant launcher, which is connected to a deposition chamber. Each CRLH waveguide supports infinite wavelength propagation and consists of a chain of periodically cascaded unit cells. The SWP is excited by a set of slots placed to interrupt large area surface current on the resonant launcher. This configuration yields a uniform gas discharge distribution. We achieve 80 nm/h growth rate for NCD films with a low surface roughness (5–10 nm) at 395 ◦C and 0.5 mbar pressure using a H2/CH4/CO2 gas mixture.

1.Introduction Nanocrystalline diamond (NCD) with excellent

physical, chemical and surface tribological properties is an attractive material for microelectro-mechanical systems, biosensors, thermal management and applications requiring high abrasion resistance [1–4]. Most of these applications demand uniform diamond films over large areas, which is a major challenge for industry and the research community. The two most widely used methods for growing NCD are hot filament (HF) and microwave plasma enhanced (MWPE) chemical vapor deposition (CVD).

The HFCVD is a preferred method in industry for a large area CVD due to a relatively low cost and scalability. The scalability is achieved by extending or adding more filaments that can yield deposition areas of up to few square meters. The HFCVD method, however, suffers from two main drawbacks: long-term filament instability and contamination of the growing diamond film by metal evaporation from the filament itself. The long-term filament instability is a result of the filament corrosion and formation of carbides on the filament during the incubation period and CVD process. This can lead to filament distortion thus altering NCD growth conditions [5,6]. Therefore, for the growth of high purity diamond films, typically, resonant-cavity MWPECVD systems operating at 2.45 GHz frequency are used. The deposition area of these systems is limited by the gas discharge shape and size, which is roughly half the wavelength at a given frequency. The limited scaling-up of the gas discharge size can be achieved by lowering MW generator frequency from 2.45 GHz to 915 MHz, yielding deposition areas of up to approximately 30 cm2 and 200 cm2 , respectively. It is worth noting, however, that lowering generator frequency reduces MW power density by a factor of two leading to higher operational costs [7].

Diamond films, typically, are grown at substrate temperatures ranging from 500 ◦C to 1000 ◦C in HFCVD and resonant-cavity MWPECVD systems [8]. Such high substrate temperatures limit the range of substrate materials, which can be used for diamond synthesis. It is worth noting, however, that multiple research groups have succeeded growing diamond at low substrate temperatures (le;400 ◦C) reaching 135 ◦C with HFCVD [9,10], 350 ◦C with MWPECVD [11–14], and 200 ◦C using magneto-active plasma CVD method [15]. As an alternative to HFCVD and resonant-cavity MWPECVD either a distributed antenna array (DAA) [16,17] or a surface wave plasma (SWP) [18–21] MWPECVD system could be used to mitigate above mentioned drawbacks. The SWP and DAA systems can achieve large area and uniform diamond CVD at low temperatures (le;400 ◦C) using a H2/CH4/CO2 gas mixture, which is desirable for diamond synthesis on substrates sensitive to high temperatures such as plastic. NCD films have been successfullysynthesized on plastic at substrate temperatures below 100 ◦C using SWP method [22]. Furthermore, growth at low temperature reduces the stress induced by the mismatch of coefficients of thermal expansion between the substrate and the film. The DAA system is based on multiple elementary microwave plasma sources arranged in a square lattice matrix configuration [23]. The MW power to each plasma source is distributed via waveguide-based power divider followed by a matching circuit comprising a tuning means and a ferrite isolator [24]. Therefore, scalability of DAA microwave system introduces additional complexity and cost. SWP, on the other hand, can be excited by linear [25] and slotted [19] antennas or different types of microwave launchers [26–28]. Linear antenna SWP is excited by a set of coaxial linear antennas each surrounded by a quartz tube [29–31]. The low directivity of the linear antenna yields inefficient MW radiation distribution towards the deposition area. Additionally, a standing electromagnetic wave is formed along each antenna thus affecting the uniformity of the electric field and plasma distributions. The SWP excited by slotted antennas suffers from problems such as arc discharges, heating of the dielectric window and localized plasmas around the slots yielding non-uniform plasma density. Various configurations of advanced-geometry slotted antennas were proposed to mitigate these effects [19,32]. However, the fundamental limit in the slot-based approach is the constraint on minimum distance between two adjacent slots (ds). The ds is determined by the waveguide surface current distribution and is given by half of the waveguide wavelength (ds = lambda;g/2) [33].

In this work we introduce

剩余内容已隐藏,支付完成后下载完整资料


资料编号:[596311],资料为PDF文档或Word文档,PDF文档可免费转换为Word

您需要先支付 30元 才能查看全部内容!立即支付

企业微信

Copyright © 2010-2022 毕业论文网 站点地图