纳米天线结构的电磁波吸收体研究任务书
2020-04-26 12:56:55
1. 毕业设计(论文)的内容和要求
(1)研究在由金属-介质-金属组成的三明治结构的电磁波吸收效应; (2)该结构的底层有金属板组成,中间是介质层,而上层由矩形金属块阵列组成。
(3)研究的波段为近红外波段; (4) 这一结构预计可以产生电磁波吸收效应,即:吸收谱中存在吸收峰,预计在吸收峰位置处,几乎100%的入射电磁波都被结构吸收; (5) 研究哪些因素会对吸收峰的吸收比和吸收峰的峰波长能产生比较大的影响;(6) 这一结构既具有理论意义,又可以用作高性能的、主要用于军事上的电磁波吸收体。
2. 参考文献
1. T. J. Yen, W. J. Padilla, N. Fang, D. C. Vier, D. R. Smith, J. B. Pendry, D. N. Basov, and X. Zhang, ”Terahertz Magnetic Response from Artificial Materials,” Science 303(5663), 1494-1496 (2004). 2. N. I. Landy, C. M. Bingham, T. Tyler, N. Jokerst, D. R. Smith, and W. J. Padilla, ”Design, theory, and measurement of a polarization-insensitive absorber for terahertz imaging,” Phys. Rev. B 79(12), 125104 (2009). 3. A. W. M. Lee, and Q. Hu, ”Real-time, continuous-wave terahertz imaging by use of a microbolometer focal-plane array,” Opt. Lett. 30(19), 2563-2565 (2005). 4. J. Barber, D. E. Hooks, D. J. Funk, R. D. Averitt, A. J. Taylor, and D. Babikov, ”Temperature-dependent far-infrared spectra of single crystals of high explosives using terahertz time-domain spectroscopy,” J. Phys. Chem. A 109(15), 3501-3505 (2005). 5. W. J. Padilla, M. T. Aronsson, C. Highstrete, M. Lee, A. J. Taylor, and R. D. Averitt, ”Electrically resonant terahertz metamaterials: Theoretical and experimental investigation,” Phys. Rev. B 75(4), 041102R (2007). 6. N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen,”Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342-2348 (2010). 7. D. R. Smith, J. B. Pendry, and M. C. K. Wiltshire, ”Metamaterials and Negative Refractive Index,” Science 305(5685), 788-792 (2004). 8. V. M. Shalaev, W. Cai, U. K. Chettiar, H.-K. Yuan, A. K. Sarychev, V. P. Drachev, and A. V. Kildishev, ”Negative index of refraction in optical metamaterials,” Opt. Lett. 30(24), 3356-3358 (2005). 9. C. P. Huang, X. G. Yin, Y. Zhang, S. B. Wang, Y. Y. Zhu, H. Liu, and C. T. Chan, ”Deep subwavelength Fabry-Perot-like resonances in a sandwiched reflection grating,” Phys. Rev. B 85(23), 235410 (2012). 10. M. Tonouchi, ”Coherent Thermal Antenna Using a Photonic Crystal Slab, ”Nature Photon, 1(2), 97-105, (2007). 11. M. Laroche, R. Carminati, and J.-J. Greffet, ”Coherent Thermal Antenna Using a Photonic Crystal Slab,” Phys. Rev. Lett. 96(12), 123903 (2006). 12. M. Diem, T. Koschny, and C. M. Soukoulis, ”Wide-angle perfect absorber/thermal emitter in the terahertz regime, ”Phys. Rev. B 79(3), 033101 (2009). 13. Y. Ma, Q. Chen, J. Grant, S. C. Saha, A. Khalid, and D. R. S. Cumming, ”A terahertz polarization insensitive dual band metamaterial absorber,” Opt. Lett. 36(6), 945-947 (2011). 14. Y. Todorov, A. M. Andrews, I. Sagnes, R. Colombelli, P. Klang, G. Strasser, and C. Sirtori, ”Strong Light-Matter Coupling in Subwavelength Metal-Dielectric Microcavities at Terahertz Frequencies,” Phys. Rev. Lett. 102(18), 186402 (2009). 15. A. P. Hibbins, J. R. Sambles, C. R. Lawrence, and J. R. Brown, ”Squeezing Millimeter Waves into Microns,” Phys. Rev. Lett. 92 (14), 143904 (2004). 16. Z. Y. Wei, H. Q. Li, Y. Cao, C. Wu, J. Z. Ren, Z. H. Hang, H. Chen, D. Z. Zhang, and C. T. Chan, ”Spatially coherent surface resonance states derived from magnetic resonances,” New J. Phys. 12 (9), 093020 (2010). 17. P. Jouy, Y. Todorov, A. Vasanelli, R. Colombelli, I. Sagnes, and C. Sirtori, ”Coupling of a surface plasmon with localized subwavelength microcavity modes,” Appl. Phys. Lett. 98 (2), 021105 (2011).
3. 毕业设计(论文)进程安排
(1)1月19日前,完成开题报告; (2)1月25日前,完成外文翻译; (3)3月10前,完成CST软件的操作的学习; (4)4月15日前,完成数值模拟工作; (5)5月10日前,完成数据的绘图工作; (6)6月1日前,完成毕业论文的写作工作;