登录

  • 登录
  • 忘记密码?点击找回

注册

  • 获取手机验证码 60
  • 注册

找回密码

  • 获取手机验证码60
  • 找回
毕业论文网 > 文献综述 > 理工学类 > 自动化 > 正文

基于机器视觉的糖果缺陷在线分选系统设计文献综述

 2021-12-16 23:17:24  

全文总字数:10670字

YOLO

摘要

我们提出了YOLO,一种新的目标检测方法。以前的目标检测工作重新利用分类器来执行检测。相反,我们将目标检测框架看作回归问题从空间上分割边界框和相关的类别概率。单个神经网络在一次评估中直接从完整图像上预测边界框和类别概率。由于整个检测流水线是单一网络,因此可以直接对检测性能进行端到端的优化。

我们的统一架构非常快。我们的基础YOLO模型以45帧/秒的速度实时处理图像。网络的一个较小版本,快速YOLO,每秒能处理惊人的155帧,同时实现其它实时检测器两倍的mAP。与最先进的检测系统相比,YOLO产生了更多的定位误差,但不太可能在背景上的预测假阳性。最后,YOLO学习目标非常通用的表示。当从自然图像到艺术品等其它领域泛化时,它都优于其它检测方法,包括DPM和R-CNN。

1. 引言

人们瞥一眼图像,立即知道图像中的物体是什么,它们在哪里以及它们如何相互作用。人类的视觉系统是快速和准确的,使我们能够执行复杂的任务,如驾驶时没有多少有意识的想法。快速,准确的目标检测算法可以让计算机在没有专门传感器的情况下驾驶汽车,使辅助设备能够向人类用户传达实时的场景信息,并表现出对一般用途和响应机器人系统的潜力。

目前的检测系统重用分类器来执行检测。为了检测目标,这些系统为该目标提供一个分类器,并在不同的位置对其进行评估,并在测试图像中进行缩放。像可变形部件模型(DPM)这样的系统使用滑动窗口方法,其分类器在整个图像的均匀间隔的位置上运行[10]。

最近的方法,如R-CNN使用区域提出方法首先在图像中生成潜在的边界框,然后在这些提出的框上运行分类器。在分类之后,后处理用于细化边界框,消除重复的检测,并根据场景中的其它目标重新定位边界框[13]。这些复杂的流程很慢,很难优化,因为每个单独的组件都必须单独进行训练。

剩余内容已隐藏,您需要先支付 10元 才能查看该篇文章全部内容!立即支付

企业微信

Copyright © 2010-2022 毕业论文网 站点地图